

Innovative digital tools for training in the field of welding

Digital Learning Materials for Welding Simulator

IO2 – TECHNICAL REPORT

2018-1-RO01-KA202-049218

Index

	Executive Summary	2
1.	Introduction	4
2.	Brief overview of IO1 — New curricula of guidelines AD-089r5-14	5
3.	 3.1. Workplan	7 8 9 12 17 20
	3.4.4. Unit 3 – Quality Assurance in Welding	24

Executive Summary

DIGIWELD Innovative digital tool for training in the field of Welding is an Erasmus+ funded project that addresses the European Council's Communication "Rethinking Education: Investing in skills for better socio-economic outcomes, which states the importance of promoting the use of technology for an effective learning and for reducing barriers to education, allowing individuals to learn anywhere, at any time, in individualized learning pathways. This project aims to develop:

- A proposal for updating the European EWF-IAB-089r5-14 Guideline (i.e. the European Welder Guideline) that supports the introduction of a new module about Digital Competences and the use of welding simulators in practical training, in specific conditions, as viable and innovative tools for education and training of future welders,
- A digital tool to be inserted in simulators as modules dedicated to the training of young trainees (aged 16 to 20 years old).

In this sense, DIGIWELD Partners (six entities from Belgium, Spain, Italy and Romania with expertise in Education, Welding and in developing welding simulators) gathered to propose an updated component of the education and training European Guidelines for welding to attract young trainees to the knowledge and responsibilities of the Welder profession. Another goal was to create an open and innovative digital learning system (SIMTRANET) in the field of arc- welding technology and digital educational materials that allow trainees to access information and to perform practice time using welding simulators. To achieve DIGIWELD purposes, partners are also working towards the creation of conditions for international groups of trainees to actively participate in simultaneous training and welding contests in the safest conditions possible by using specific stand-alone simulators or virtual classrooms. Trainees with difficulties in learning or struggling economically to use digital systems for their training are targeted by this project, which also targets:

- Trainees from Vocational Education and Training (VET) schools, who will learn welding technology in a digital environment using augmented reality,
- Teachers and trainers from VET schools and other non-formal education entities, who will acquire digital competences in the field of simulators/computer networks and improve their knowledge in welding processes and innovative teaching and training methods,
- Unemployed adults or people with fewer opportunities, who will have the opportunity to obtain new skills and competences both in Information and Communication Technology (ICT) and welding field or discover and develop other skills, bringing them closer to job positions.

The present result is one of the tasks that has been carried out in the scope of DIGIWELD project's **Intellectual Output** (IO) 2- Digital learning materials for welding simulator. It focuses on the work done by DIGIWELD partners towards the development of the digital learning materials dedicated to MIG/MAG, TIG and MMA welding processes and to Quality Assurance in Welding, which will be uploaded on SIMTRANET, a digital learning system created in the scope

IO2 – Technical Report

of DIGIWELD. In addition, taking into consideration the restrictions imposed by COVID-19 pandemia, the DIGIWELD partners decided to develop supplemental material for welding processes: Gas Welding.

It aims to be a critical analysis towards standardization, applicability and relevance points of view, focusing on the compatibility of these contents with the European Welder Guideline having in consideration that these digital learning materials were based on the updates proposed for the European Welder Guideline (EWF-IAB-o89r5-14 Guideline). Therefore, the topics addressed by *Module 2 Welding Processes* (MIG/MAG, TIG and MMA welding processes) and *Module 3 Quality Assurance in Welding*, part of DIGIWELD course, are in line with the referred Guideline.

Hence, this Technical Report explains how the alignment between the subjects/topics of the European Welder Guideline were ensured by DIGIWELD partners involved in the development of the learning contents and how the technical revision was conducted towards the final version of the above mentioned modules/contents, considering their compliance with standardization. Their applicability and relevance to trainees' education and training and theoretical knowledge complies with the European Welder Guideline and the most updated state of the art. The report contains the results of the following activities:

- Elaboration of digital learning materials, in terms of theoretical issues, for three topics: digital competences, welding processes and quality assurance in welding
- Technical revision of digital learning materials from scientific content point of view
- Pedagogical analysis of digital learning materials from level of understanding point of view

1. Introduction

The present Technical Report is one of the tasks to be carried out in the scope of DIGIWELD project's Intellectual Output (IO) 2 - Digital learning materials for welding simulator. It focuses on the work done by DIGIWELD partners towards the development of the digital learning materials dedicated to MIG/MAG, TIG and MMA welding processes and to Quality Assurance in Welding, which will be uploaded on SIMTRANET, a digital learning system created in the scope of DIGIWELD. It aims to be a critical analysis towards standardization, applicability and relevance points of view, focusing on the compatibility of these contents with the European Welder Guideline having in consideration that these digital learning materials were based on the updates proposed for the European Welder Guideline (EWF-IAB-089r5-14 Guideline). Therefore, the topics addressed by *Module 2 Welding Processes* (MIG/MAG, TIG and MMA welding processes) and *Module 3 Quality Assurance in Welding*, part of DIGIWELD course, are in line with the referred Guideline. This alignment was ensured by DIGIWELD partners involved in the technical revision of all materials developed during the elaboration phase (whose knowledge of the European Welder Guideline's contents is extensive), a process illustrated by the table below:

Table 1 – Partners involved in the development of digital learning materials' contents and for the respective technical revision

Subject	Partner responsible for developing the contents	Partner responsible for the contents' technical revision	Partner responsible for the contents' understanding revision
MIG/MAG	IIS Progress (IT)	EWF (BE)	CNT
TIG and MMA	CESOL (ES)	EWF (BE)	
Quality Assurance in Welding	EWF (BE)	CESOL (ES)	

Hence, this Technical Report explains how the alignment between the subjects/topics of the European Welder Guideline were ensured by DIGIWELD partners involved in the development of the learning contents and how the technical revision was conducted towards the final version of the above mentioned modules/contents, considering their compliance with standardization, their applicability and relevance to trainees' education and training and theoretical knowledge, according to the European Welder Guideline and the most updated state of the art.

2. Brief overview of IO1 – New curricula of guidelines AD-089r5-14

This IO consisted of proposing an update of the European Welder Guideline (EWF-IAB 089r5- 14), which is dedicated to qualification and certification of welders at European and International levels. The tasks involved in this IO were planned to allow the development of a curricula for training young trainees (between 16 and 20 years old) in welding using digital tools. These tasks considered the following topics:

- a. Proposal for accessing the course,
- b. Proposal for updating the curricula with a new module about Computer & Simulation,
- c. Proposal for updating the number of hours related to practical training,
- d. Proposal for updating Chapter 8.2 of the Guideline (Practical training and tests) regarding procedures for training (i.e. how to apply, number of hours and types of joints to address) and for examination (i.e. designing specific tests to prove trainees' skills and the practical knowledge to start practicing on real welding equipment).

The main conclusions for each of these topics, were:

- a. **Proposal for accessing the course** It is proposed to add to Section 2 of the European Welder Guideline (Standard Route Qualification Access) the following sentence: *If a welding simulator is used for the practical training, applicants must have basic knowledge and skills in digital tools.*
- b. Proposal for updating the curricula with a new Competence Unit (CU) about Computer & Simulation The implementation of Simulators and Learning Management Systems (LMS) in the European Welder training requires an introduction of the trainees to these new instruments. Hence, DIGIWELD proposes a new CU entitled "Introduction to Computer and Simulations" to be set as optional and to be implemented in training institutions (i.e. ATBs) that carry out their training using the Welding Simulator and LMS. It may be considered as a transversal (cross-cutting) CU to all levels of Welders as it is not directly linked to a specific job activity, so it might be mobilized in several job functions. Also, the consortium decided to attribute this CU 4 contact-hours and an <u>Elementary depth proficiency level</u> (comparable to Level 2 EQF).
- c. **Proposal for the use of practical training hours, both for welding simulators and real welding equipment**- The proposal considered was to split the minimum recommended hours for practical training into a minimal of 40% of that time in the real welding equipment. This division might need to be evaluated individually by exercise, as there may be some cases, due to difficulty inherited to the process and position, where more time may be needed in the real welding equipment.
- d. **Proposal for updating Chapter 8.2 of the Guideline (Practical training and tests)** There are minimum recommended training hours, positions, material specifications and evaluation, which are described accordingly in each practical module of the European Welder Guideline. The welding simulator created in the scope of DIGIWELD will provide practical exercises related to all European Welder course modules (both theoretical and practical), offering the needed welding positions for

trainees to practice and to be prepared for a final exercise with a real welding machine. As part of the practical training, the Welding Simulator will be used before the real-life (i.e. practical) welding modules, allowing trainees to learn their positioning in relation to the piece to weld, learn to use the torch (angle and techniques) and adjust the needed welding speed. In this sense, DIGIWELD proposed the following:

- Procedure for training (i.e. how to apply, number of hours, types of joints to address) The use of the simulator for practical training should constitute 50% to 60% of the training hours in each module, leaving a minimum of 40% of the recommended hours for the real practical training with welding equipment. This division might need to be evaluated individually by exercise due to possible difficulties associated to the welding process and position, where more time may be needed in the real welding equipment. It is recommended that trainees are given the opportunity to repeat, on the welding simulator, all welding exercises two (2) times before moving to the real-life practical welding exercises, using welding equipment. The simulator provides a specific score and allows the configuration of the level of difficulty (Beginner, Intermediate or Advanced) and aid (total, some or no aid) the exercises will require, which can be total, some or no aid at all. It is for the trainer to decide the level of aid to provide to trainees. As example, trainees must obtain at least 60% score, in each exercise, without any aid from simulator before moving to practical training in the real welding equipment. The welding simulator allows to practice the processes taught throughout the European Welder course, namely Process 111 (MMA-Welding), Process 135, 136, 138 (MAG-welding), Process 131 (MIG- Welding) and Process 141 (TIG-welding).
- Procedure for examinations (i.e. designing specific tests to prove trainees' skills and practical knowledge in order to start the practical training in real welding equipment) DIGIWELD consortium recommends that the welding simulator should not be used for the realization of intermediate examination (exercises carried out by the end of each practical module, based on test pieces aligned with ISO 9606). However, if there is a chance in the future that the welding simulator could be used for this purpose, the level of difficulty should be Advanced, with no aid from the simulator.

Considering that all the work done towards the development of the digital learning materials was based, as previously mentioned, on the European Welder Guideline (EU Guideline IAB- 089r5-14) and on the results achieved in IO1, understanding these conclusions provides context to the tasks addressed by this Technical Report, explained in the next section.

3. Digital training contents – Development & Technical revision

3.1. Workplan

After reaching the above-mentioned conclusions, DIGIWELD Partners met to discuss how the contents of the digital learning materials would be addressed, developed and by whom.

Knowing that DIGIWELD course would need to have contents dedicated to welding processes MIG/MAG, TIG and MMA and Quality Assurance in Welding (in line with the European Welder Guideline), in addition to the CU *Introduction to Computer & Simulations*, ASR (partner leading DIGIWELD IO₂) proposed the topics to be developed for each subject (i.e. welding process and Quality Assurance in Welding), to which all Partners agreed:

Table 2 – Topics to be developed for each Welding Process

Welding			Topics		
Process	Introduction	Technology	Equipment	Special	Health & Safety
				Application	
MIG/MAG	 Principle Application Versions 	 Parameters Techniques Consumables Gas types Transfer mode 	 Power sources Torches Feeders Mechanization 	 Fully mechanized welding High alloyed and high-strength steels Aluminium 	 General recommendations specific for the process Risks
TIG		 Parameters Techniques Consumables 	 Power sources Torches W electrodes Mechanization 	 Piping High alloyed and high-strength steels Aluminium (TIG) 	 Protection equipment
MMA		• c.c., c.a.	Power sourcesClamps		

Table 3 – Topics to be developed for Quality Assurance in Welding

		Topics				
	Quality in	WPS, WPQR	Material	Inspection	Welder Qualification	
Quality	Welding		Imperfections			
Assuranc	 Generals 	 Standards 		 Examination 	 Test coupon 	
e in	• Specific	 Description 	• ISO 6520	• Testing	Range of	
Welding	standards	 Qualification 	• ISO 5817	• Specific	qualification	

(ISO 3834,	(ISO/TR 15608,	• ISO 10042	standar	• Validity
ISO 9001)	ISO		ds	(ISO 6906-1)
	15609-1 & ISO			
	15614-1)			

Having in consideration that these contents will be uploaded on SIMTRANET and on welding simulators (together with real case studies prepared by Partners as basis for the exercises to be carried out by trainees in the scope of their training) as part of two of the three modules trainees can choose to carry out, each subject had a specific number of pages and was prepared to be carried out in a specific number of hours. These contents has been translated to the languages of the partnership (ES, IT, PT and RO).

3.2. Elaboration phase

Considering all DIGIWELD Partners have knowledge about the topics to be developed, they were given three months to work on each subject, complying with the suggested topics previously mentioned. For the development of the contents, Partners had a set of rules to prevent any issues related with the use of images uploaded from online search engines, the use of which need permission from their authors.

After developing all the contents, Partners sent their work for a technical revision, in accordance with the workplan illustrated on Table 1.

3.3. Technical revision

The technical revision was made by EWF and CESOL experts to check for the conformity and compliance of the learning materials' contents with the European Welder Guideline, as it addresses specific subjects related to the welding processes and quality assurance in welding, also covered by DIGIWELD course. This alignment must be ensured for the sake of the quality of the material and its applicability and relevance in terms of implementation on welding simulators. Therefore, this revision focused on:

- Conformity of the used terminology on the educational materials with the terminology used in the Welding context and/or in Standardization documents (e.g. ISO 3834);
- ISO Standards documents' references (e.g. reference to correct numbers, issuing dates and parts);
- Missing ISO standards or contents related to the topics as hand which must be included to the materials;
- Suggestions for clarification of definitions, concepts or ideas;
- Suggestions for deletion of information that is not relevant to the quality of the contents and that can be searched by the trainees as parallel activity in the scope of their training;
- Suggestions for images that could be used to better illustrate a concept or idea;
- Suggestion for the logic sequence between topics.

Considering that the subjects and contents of the European Welder Guideline (and consequently of DIGIWELD course) are in line with Industry requirements, this technical revision had in consideration the ISO standards to be addressed by Partners when developing the materials. In some cases, it was necessary to add reference to standards and to explain their importance for the topic at hand. In other cases, existing references needed to be rectified as ISO standards' titles have a specific structure due to their constant updating, allowing their correct identification. Other situations refer to ISO standards that no longer exist and whose reference needed to be rectified. This revision also had in consideration the fact that all materials were prepared to be used by young trainees. Therefore, the language and terminology used had to be simple and understandable, but still technical so that trainees have the chance to get familiar with the terms used in the Welding sector. For example, the definitions connected to some of the ISO standards' purposes had to be revised in accordance with this principle as they were too technical and had to be simplified so that it can be understood by young trainees.

Finally, the technical revision also had in consideration the structure of the paragraphs which, in some cases, had to be revised to ensure the organization of concepts and/or ideas, preventing contents from being too complex or confusing. After the technical revision, DIGIWELD partners had the chance to make the necessary changes to improve the contents towards the final version of DIGIWELD modules, to be uploaded on SIMTRANET and on welding simulators to be used by European VET schools for the training of future welders.

3.4. Pedagogical revision

The purpose of this study is to analyse curricular design experiences in the context of update curricula, which to be used in high school and VET entities, incorporating welding simulators into the European Welder (EW), from methodological point of view.

By integrating such tool in the EW curriculum, the DIGIWELD consortium aims to strengthen the link between theoretical and practical learning and to empower learners to acquire knowledge and digital skills through a practical and accessible tool adapted to the context of welding.

Of all the factors involved in the vocational training process, the main beneficiaries of the curriculum are students. The curricular paradigm emphasizes the partnership between the teacher and student, highlights the active role of the student in vocational training, but at the same time, we raise awareness the fact that it is the teacher who coordinates the training process.

The curriculum corresponding to the qualifications of the vocational and technical education (TVET) is elaborated based on the Standards of vocational training (SPP). The SPP represents the document in which are described the learning outcomes that a participant in a vocational training program, carried out in the professional education and technically, he has to prove them at the end of it; also the SPP is the document that underlies the evaluation for certification purpose

The reference framework for the 8 key competences is the subject of a recommendation made by the European Parliament to all Member States. The key competences are acquisition of learning (combinations of knowledge, skills and attitudes) that allows the flexible and rapid adaptation of the graduate.

IO2 – Technical Report

The eight areas of competence defined by the European Commission are: communication in the mother tongue; communication in foreign languages; competences in mathematics and elementary competences in science and technology; digital skills and use of new technologies (ICT); the competence to learn to learn; interpersonal skills and civic skills; a spirit of initiative and entrepreneurship; cultural awareness and artistic expression.

A competence is defined as a combination of knowledge, skills and attitudes appropriate to the context. Competence indicates ability application of learning outcomes in the appropriate context in a defined context (education, work, personal or professional). The competence is not limits cognitive elements (implying the possibility of theory, concepts or tacit knowledge); it also encompasses functional aspects (involving technical skills) as well as interpersonal attributes (for example, skills social or organizational) and ethical values.

Learning outcomes are statements that describe the knowledge or skills students should acquire by the end of a particular assignment, class, course, or program, and help students understand why that knowledge and those skills will be useful to them. They focus on the context and potential applications of knowledge and skills, help students connect learning in various contexts, and help guide assessment and evaluation. Learning outcomes provide structures, from which courses and programs can be evaluated and can assist in program and curricular design, identify gaps or overlap in program offerings, and clarify instructional, programmatic priorities.

Digital skills and the use of new information and communication technologies involve the critical and confident use of electronic media at work, during leisure and for communication. These competences refer to logical and critical thinking, information management skills to high standards and to developed communication skills. At the basic level, ICT skills include the use of multimedia technology to receive, evaluate, store, produce, present and exchange information and to communicate and participate in networks, over the Internet. Between learning outcomes and content is a bi-unequivocal relationship, the competences determine the thematic contents, and their achievement ensures the acquisition of the desired skills by the students.

In order to achieve the **learning outcomes** established by the learning unit, the teacher has the freedom to scale contents over time, to use various learning activities, with emphasis on those with an application character, centered on the student. It is recommended to go through the contents proposed in the following order:

- Specification of the concrete activities of the students in relation to each unit content, so that it takes controllable forms.
- Directing the process of forming the notions through the game of examples and counterexamples.
- Anticipate the learning strategy to ensure the training the desired behaviors and specified by the operational pedagogical objectives.
- Anticipate the training strategy so that it corresponds directly to the learning strategy, aiming at a real differentiation of training on one problematic fund flexible and built from simple to complex.
- Control of mental operations through numerous exercises and applications.
- Predicting the sequences of recapitulation, fixation and synthesis;

• To make the education successful, it is necessary to set up conditions for acquirement of required practical skills and activities in the form of exercises (in laboratories, workshops, special classrooms, simulated companies, etc.) and practical training.

Starting from the principle of integration, which ensures access to school for all students, accepting that each student is different, consideration will be given to the use of specific methods for developing skills for those students who have integrative deficiencies, adapting them to the specific conditions of learning and behavior (the use of individualized programs, the preparation of individual sheets for students with slow learning rhythms, the use of learning aids, the praise of even the smallest progress, and the setting of the next steps together). The intellectual structures are formed in a generative and successive way, following the following stages (from the elementary ones, to the most complex ones): its sensorial-motor dimension (which represents the starting point of any learning, observational learning, concept learning (and specific terminology) appropriate), learning some rules, principle, learning some strategies, learning through research (creative learning and the process of discovery).

Vocabulary for writing Learning Outcomes:

It is important to find the right words when writing learning outcomes. The following list of words and terms is provided as an aid in the familiarization process.

Activities giving evidence of knowing may be described in terms of:

Define, describe, identify, label, list, name, outline, reproduce, recall, select, state, present, be aware of, extract, organize, recount, write, recognize, measure, underline, repeat, relate, know, match.

• Activities giving evidence of comprehension may be described in terms of:

Interpret, translate, estimate, justify, comprehend, convert, clarify, defend, distinguish, explain, extend, generalize, exemplify, give examples of, infer, paraphrase, predict, rewrite, summarise, discuss, perform, report, present, restate, identify, illustrate, indicate, find, select, understand, represent, name, formulate, judge, contrast, translate, classify, express, compare.

• Activities giving evidence of knowledge/ understanding may be described in terms of:

Apply, solve, construct, demonstrate, change, compute, discover, manipulate, modify, operate, predict, prepare, produce, relate, show, use, give examples, exemplify, draw (up), select, explain how, find, choose, assess, practice, operate, illustrate, verify.

• Activities giving evidence of analysis may be described in terms of:

Recognize, distinguish between, evaluate, analyze, break down, differentiate, identify, illustrate how, infer, outline, point out, relate, select, separate, divide, subdivide, compare, contrast, justify, resolve, devote, examine, conclude, criticize, question, diagnose, identify, categorise, point out, elucidate.

• Activities giving evidence of synthesis may be described in terms of:

Propose, present, structure, integrate, formulate, teach, develop, combine, compile, compose, create, devise, design, explain, generate, modify, organize, plan, re-arrange, reconstruct, relate, re-organize, revise, write,

summarize, tell, account for, restate, report, alter, argue, order, select, manage, generalize, précis, derive, conclude, build up, engender, synthesize, put together, suggest, enlarge.

Activities giving evidence of evaluation may be described in terms of:

Judge, appraise, assess, conclude, compare

3.4.1. Unit 1 – Introduction in Computer and simulation

CONCLUSIONS:

• The information may provide differentiated training support. There is a correlation between information transmitted through text/ images/ graphics/ tables/charts/ symbols/ multimedia elements / supporting texts referring to:

Elementary principles of:

- Digital tools ;
- Learning management system (LMS);
- Welding simulators;
 - The presentation of the contents is gradually realized as a difficulty, in a unitary conception, by a consistent style and by highlighting the keywords necessary for the realization of the conceptual scheme.
 - The information transmitted is oriented on the learner, respectively on his/her availability, and will better value them.
 - The learning outcomes are found in the standards of professional training, for the qualifications corresponding to the field of professional training.
 - The learning unit being an elastic structure can incorporate, at any moment of the educational process, new means or didactic resources;
 - It allows the individualization of learning and the articulation of formal and informal education.
 - Teachers can decide on the number of hours allocated to each topic, depending on: the difficulty of the topics, the level of previous knowledge of the trained group, the complexity and variety of the teaching material used the rate of assimilating the knowledge and forming the skills of the trained group.
 - Between learning outcomes and content is a bi-unequivocal relationship, the competences determine the thematic contents, and their achievement ensures the acquisition of the desired skills by the students. The proposed learning outcomes are in line with the specific training.
 - The information transmitted in the course support is focused on learning outcomes and acquiring the knowledge, skills and attitudes required in one of the occupations specified in the professional training standards corresponding to the professional qualifications of level 3, in the field of professional training Mechanical, professional qualifications: welder. It has a logical structure; coherent is presented in an attractive way for students.

The logical sequence of the contents corresponds to a constructivist approach referring to:

- Use learning management systems (LMS) for synchronous and asynchronous training;
- Identify the differences between simulated welding and real welding;
- Use welding simulators practice for preparing to real welding contexts;
- Identify additional welding digital tools used in training;

Use additional digital tools in the context of practical training in welding when applicable. It maximally activates the students' thinking, individualizes the act of learning and it ensures differentiated activities, eliminates dead or redundant times from student activities. The data and information, as well as the terms used, the concepts applied and the concepts covered and are accessible to students.

RECOMMENDATIONS:

• Define the learning outcomes of the unit should be done.

As a proposal it could be :

Unit: "Introduction in Computer and Simulation"

The student is able to:

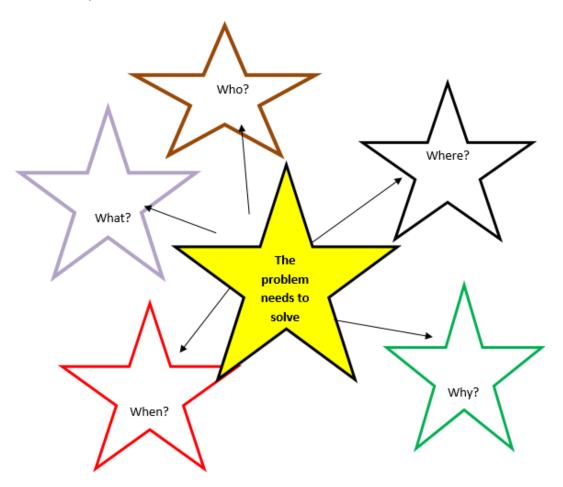
Knowledge	Skills	Attitudes	Contests of learning
Explain advantages and	Recognize digital tools used in welding	Collaboration with the	Training Digital Tools
disadvantages of digital	training;	members of the	and Methodology
tools in welding;	Identify digital tools used in welding training	working team in order	
	Identify the advantages of the use of digital	to fulfill the task;	
	tools in welding learning process from		
	economical, ecological, safety point of view;	Assumption within the	
Describe Virtual Learning	Identify what Virtual Learning	work team of the	Learning
Environments	Environments consists;	responsibilities for the	Management System
and characteristics of	Give examples of different types of VLEs;	work task.	
LMS;	Identify the characteristics of LMS;		
Describe and explains	Relate setting and functionalities of a LMS;		
setting and functionalities	Compare LMS in learning process with		
of a LMS;	traditional course;		
	Identify available solutions for developing		
	LMS;		
Identify the difference	Present the characteristics and components		Welding Simulators
between welding	of Augmented Reality (AR) technology;		Augmented Reality;
simulator and real welding	Present the characteristics and components		Virtual Reality
system;	of VR welding simulator technology;		
Describe and explain	Compare Augmented Reality (AR)		
setting and functionalities	technology with VR welding simulator		
	technology;		

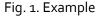
of Welding simulators	Prepare the welding environment using
systems;	welding simulator technology. welding
	simulator technology

- the use of methods that favor the student's direct relationship with the objects of knowledge, by using concrete models;
- combining and a systematic alternation of activities based on the individual effort of the student (documentation from various sources of information, personal observation, personal exercise, programmed training, experiment and individual work) with the activities that require the collective effort (team, group) of the kind of discussions, the assault of ideas, etc.;
- applying the student-centered methods, on activating the students' cognitive and operative structures, on exercising their psycho-physical potential, on transforming the student into a participant in their own training and education;

It is recommended to approach the student-centered training by designing a variety of learning activities, taking into account the individual learning styles of each student. These concern the following aspects: the acquisition of independent information and documentation methods, which offer the openness to self-instruction, to continuous learning. In order to reach the objectives and to develop the knowledge, skills and aptitudes /competences aimed at completing the Unit, the following teaching-learning methods can be used:

- oral communication methods: expository, interrogative (conversational or dialogical); discussions and debates; problem solving;
- methods of exploring reality:
 - a. Methods of direct (direct) exploration of reality: systematic and independent observation; experiment;b. methods of mediated (indirect) exploration of reality: demonstrative methods; modeling methods;
- methods based on action (operational or practical):
 - a. Methods based on real / authentic action: exercise; case study; the research project or theme; practical works;
 - b. simulation methods -learning on simulators.
- methods that stimulate creativity: brainstorming, didactic play, star busting, thinking hat method, carousel, multi-voting, round table, group interview, case study, critical incident, Phillips 4/4, technique 4 / 3/5, creative controversy, aquarium technique, focus-group technique, "Four Corners", Frisco method, "Synectica", "Buzzgroups", "Delphi" method


Example:


Below is a learning material using the Starbursting method. Starbursting is a new method of developing creativity, similar to brainstorming. It starts from the center of the concept and spreads out, with questions, like a stellar

IO2 – Technical Report

explosion. The purpose of the method is to get as many questions and thus as many connections between concepts. It is a way of stimulating individual and group creativity. The Starbursting facilitates the participation of the whole group, stimulates the creation of questions at questions, as brainstorming develops the construction of ideas on ideas. It starts from the center of the concept and goes outward, with questions, like the stellar explosion. Write the idea or problem on a sheet of paper and ask as many questions as possible about it. A good starting point is those of the type: What?, Who?, Where?, Why ?, When?

The steps of the method:

1. The students are placed in the semicircle. The central idea is written or drawn on a big star or on a sheet of paper.

2. Another 5 stars write a question of the type: WHAT? WHO? WHERE? WHY? WHEN? Five students ask one question. Each of the five students chooses three or four colleagues, thus organizing themselves into five groups.

3. The groups cooperate in the elaboration of the questions.

4. At the end of time, the students return to the semicircle and a representative of the group communicates the elaborated questions. Students in the other groups answer questions or ask questions.

5. Students' questions, their efforts to develop correct questions, as well as their cooperation and interaction are appreciated.

Theme: Augmented Reality vs. Virtual Reality

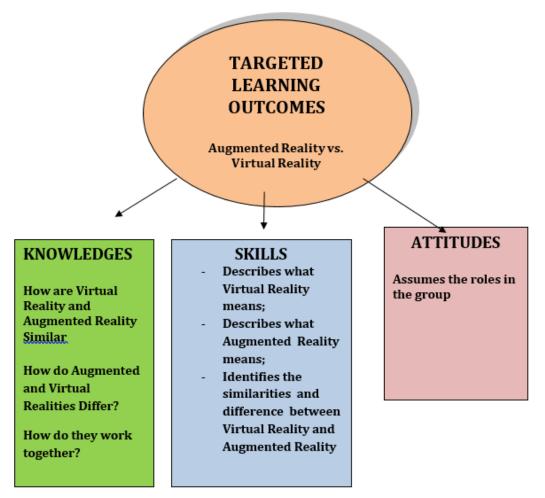


Fig. 2. Theme: AR vs VR

- 1. The teacher writes the central idea on a big star or on a sheet of paper: Augmented Reality vs. Virtual Reality
- 2. Five students ask one of the following questions: WHAT? WHO? WHERE? WHY? WHEN?
- 3. The five choose three or four colleagues, thus organizing five groups.
- 4. The groups cooperate in the elaboration of questions such as:
 - WHAT is Real Enviroment?
 - WHAT is Virtual Enviroment?
 - WHO was at 3D movies? WHAT happened there? HOW it was?
 - WHERE have they met Augmented Reality? Did they play with Pokémon Go app?
 - WHY is Virtual Reality and Augmented Reality Similar?
 - WHEN do we talk about Virtual Reality and Augmented Reality? Which are the differences?
- 5. At the expiration of time, a representative of the group communicates the questions asked. Students in the other groups answer questions or ask questions.
- 6. The teacher appreciates the students' questions, their effort to elaborate the correct questions, as well as the way of cooperation and interaction.

3.4.2. Unit 2 – Welding Processes – TIG Welding

CONCLUSIONS:

 The information may provide differentiated training support. There is a correlation between information transmitted through text/ images/ graphics/ tables/charts/ symbols/ multimedia elements / supporting texts referring to:

Elementary principles of:

- Introduction of TIG Welding;
- Welding Equipment;
- Welding Technology;
- Health and Safety of TIG Welding
 - The presentation of the contents of unit ,,TIG Welding" is gradually realized as a difficulty, in a unitary conception, by a consistent style and by highlighting the keywords necessary for the realization of the conceptual scheme.
 - The information transmitted is oriented on the learner, respectively on his/her availability, and will better value them;
 - The learning outcomes are found in the standards of professional training, for the qualifications corresponding to the field of professional training of level 3 and 4, Mechanical, professional qualifications: welder respectively technician in welding processing.
 - The learning unit being an elastic structure can incorporate, at any moment of the educational process, new means or didactic resources;
 - It allows the individualization of learning and the articulation of formal and informal education.
 - Teachers can decide on the number of hours allocated to each topic, depending on: the difficulty of the topics, the level of previous knowledge of the trained group, the complexity and variety of the teaching material used the rate of assimilating the knowledge and forming the skills of the trained group.
 - Between learning outcomes and content is a bi-unequivocal relationship, the competences determine the thematic contents, and their achievement ensures the acquisition of the desired skills by the students. The proposed learning outcomes are in line with the specific training.
 - The information transmitted in the course support is focused on learning outcomes and acquiring the knowledge, skills and attitudes required in one of the occupations specified in the professional training standards corresponding to the professional qualifications of level 3 and 4, in the field of professional training Mechanical, professional qualifications: welder respectively technician in welding processing.
 - It has a logical structure; coherent is presented in an attractive way for students.

The logical sequence of the contents corresponds to a constructivist approach referring to:

- 1. Equipment used in TIG welding process;
- 2. Parameters (current, voltage, speed, etc.) which affect the process;
- 3. TIG welding technologies
- 4. Health and safety measures
 - 4 Use additional digital tools in the context of practical training in TIG welding when applicable;

4 It maximally activates the students' thinking, individualizes the act of learning and it ensures differentiated activities, eliminates dead or redundant times from student activities.

4 The data and information, as well as the terms used, the concepts applied and the concepts covered and are accessible to students.

RECOMMENDATIONS:

4 Define the learning outcomes of the unit should be done.

As a proposal it could be:

Unit: TIG Welding

The student is able to:

Knowledge	Skills	Attitudes	Contests of
			learning
Use and explain the	Identify, select and prepare	Collaborate	Equipment used
terminology	the TIG equipment for the	with the	in TIG welding
associated with the	welding process.	members of the	process
TIG welding process.		working team in	
Describe the		order to fulfill	
advantages and		the task;	
limitation of the TIG			
welding process;		Assume within	
Identify of welding		the work team	
equipment such as		of the	
tungsten electrodes,		responsibilities	
filler metal rods, or		for the work	
torch holders and		task.	
specific component			
elements used in TIG			
welding process;			
Explain the	Identify Power source, tools		Parameters
importance of the	and accessories used for TIG		(current,
correct equipment	welding		voltage, speed,

chnical Report		
assembly, setting of	Describe the principle,	etc.) which
the power source	formation, nature, power of	affect the
and choice of	the electric arc used for	process
electrode and the	welding welded joints;	Power Source
consequences of	Establish the parameters of	Cables
incorrect selection	use of the electric arc and	Ground Devices
	the possibilities of	Voltage Drops
	protection of the electric arc;	
Inspect and prepare	Identifiy what type of	TIG welding
the work-piece/s	electrode to be use with DC	technologies
according to	or AC current;	Arc Ignition on
drawings and working	Select and use welding	TIG Welding
practices, for TIG	consumables as per	Sharpening of
welding.	requirements for welding	Electrode
Explain the	carbon steel, aluminium and	Non-
importance of the	stainless steel plate.	Consumable
correct equipment	Use the gas tungsten arc	Electrodes
assembly, setting of	welding (TIG) process in all	Classification of
the power source	positions.	Filler Rods and
and choice of	Weld the work-piece	Wires
electrode and the	material in accordance with	Classification of
consequences of	work instruction sheet and	Shielding Gas for
incorrect selection.	drawing	Arc Welding and
Explain the thickness	requirements using	Cutting
of materials, in	simulator /real equipment.	Influence of
relation to size and	Apply quality checks on	Welding
type of welding	process.	Parameters on
electrode used,	Inspect welded work-piece	TIG welding
and the influence of	for defects (use visual and	technologies
electrode	non-destructive testing),	Welding
manipulation during	conforming to specifications	Positions
the welding process	as reflected on drawing or	
Prepare the TIG	job requirement.	
welding environment	Identify welding defects and	
using simulator /real	take corrective action.	
equipment.		

IO2 – Technical Report

Identify and rectify	Observe safe working	Health and
possible welding	practice during welding;	safety measures
hazards in accordance	Apply other measures to be	Safety
with standard work	taken regarding the	precautions
site	prevention of accidents	applicable to
practices.	related to noise, smoke, fire,	Welding
Explain the safety	electric shock.	machines, hand
requirements relating		tools,
to welded products.		equipments,
Provide examples of		tools and during
failures and explain		welding
their causes and		operations
consequences.		

3.4.3. Unit 2 – Welding Processes – MMA Welding

CONCLUSIONS:

 The information may provide differentiated training support. There is a correlation between information transmitted through text/ images/ graphics/ tables/charts/ symbols/ multimedia elements / supporting texts referring to:

Elementary principles of:

- Introduction of MMA Welding;
- Welding Equipment;
- Welding Technology;
- Health and Safety of MMAWelding
 - The presentation of the contents of unit ,, MMA Welding" is gradually realized as a difficulty, in a unitary conception, by a consistent style and by highlighting the keywords necessary for the realization of the conceptual scheme.
 - The information transmitted is oriented on the learner, respectively on his/her availability, and will better value them;
 - The learning outcomes are found in the standards of professional training, for the qualifications corresponding to the field of professional training of level 3, Mechanical, professional qualifications: welder.
 - The learning unit ,, MMA Welding" being an elastic structure can incorporate, at any moment of the educational process, new means or didactic resources;
 - It allows the individualization of learning and the articulation of formal and informal education.

- Teachers can decide on the number of hours allocated to each topic, depending on: the difficulty of the topics, the level of previous knowledge of the trained group, the complexity and variety of the teaching material used the rate of assimilating the knowledge and forming the skills of the trained group.
- Between learning outcomes and content is a bi-unequivocal relationship, the competences determine the thematic contents, and their achievement ensures the acquisition of the desired skills by the students. The proposed learning outcomes are in line with the specific training.
- The information transmitted in the course support is focused on learning outcomes and acquiring the knowledge, skills and attitudes required in one of the occupations specified in the professional training standards corresponding to the professional qualifications of level 3, in the field of professional training Mechanical, professional qualifications: welder.
- It has a logical structure; coherent is presented in an attractive way for students.

The logical sequence of the contents corresponds to a constructivist approach referring to:

- 1. Introduction to MMA Welding;
- 2. Equipment and specific component elements used in MMA welding process;
- 3. MMA welding technologies
- 4. Health and safety measures
 - 4 Use additional digital tools in the context of practical training in TIG welding when applicable;
 - **4** It maximally activates the students' thinking, individualizes the act of learning and it ensures differentiated activities, eliminates dead or redundant times from student activities.

4 The data and information, as well as the terms used, the concepts applied and the concepts covered and are accessible to students.

RECOMMENDATIONS:

4 Define the learning outcomes of the unit should be done.

As a proposal it could be:

Unit: MMA Welding

The student is able to:

Knowledge	Skills	Attitudes	Contests of
			learning
Explain the terminology	Use terms and definitions	Collaborate	Introduction to
associated with	that are consistent with	with the	MMA Welding
MMA Welding	generally accepted	members of the	Welding process
procedures	welding terminology	working team in	using covered
	as recorded in national	order to fulfill	electrodes
	and international welding	the task;	
	standards;		

	Describe the applications,	Assumption	
	advantages and	within the work	
	limitation of the MMA	team of the	
	welding process;	responsibilities	
Identify basic and major	Identify, select and	for the work	Equipment and
components of shielded	prepare of welding	task.	specific
metal arc welding	equipment and specific		component
equipment and	component elements		elements used in
explain their function	used in MMA welding		MMA welding
and purpose.	process: power sources,		process;
Explain the importance	electrode holder;		Power Source
of correct assembly			Electrode Holder
welding equipment,	Choosing the materials,		Ground
and the consequences of	SDVs and equipment		Connection
incorrect assembly.	required to perform the		Cables and
Explain the importance	assembly by MMA		Terminals
of the correct setting of	welding;		
the power source and			
choice of electrode	Demonstrate setting up		
and the consequences of	procedures using		
incorrect selection.	simulator/real		
Explain the thickness of	equipment.		
materials in relation to			
size and type of welding			
electrode used,			
and the influence of			
electrode manipulation			
during the welding			
process.			
Establish the parameters	Prepare the welding		MMA welding
of use of the electric arc	environment.		technologies
and the part of it ;	Identify potential causes		
Identify what type of	of welding defects or		
electrode to be use with	imperfections prior to		
DC or AC current;	welding, and take		

iical Report		
	action to meet	
	requirements.	
	Choose welding	
	consumables/ additives	
	for welding joints	
	through welding	
	processes;	
	Practice MMA welding of	
	semi-finished	
	products/parts using	
	simulator/ real	
	equipment.	
	Execute the (MIG / MAG)	
	welding of common	
	welding joints in all	
	positions using simulator/	
	real equipment.	
	Inspect the end product	
	for conformance to	
	specifications as	
	reflected on drawing or	
	job requirement.	
	Identify welding defects	
	and take corrective	
	action.	
	Identify the different	
	welding positions,	
	defined in the ISO 6947:	
	2011 standard.	
Identify welding hazards	Adhere to safety	Health and
and eliminate in	, precautions.	safety measures
accordance with	Apply measures to be	, in MMA Welding
standard working	taken regarding the	
practices.	prevention of accidents	
	related to noise, smoke,	
	fire, electric shock.	

3.4.4. Unit 3 – Quality Assurance in Welding

CONCLUSIONS:

- The information may provide differentiated training support. There is a correlation between information transmitted through text/ images/ graphics/ tables/charts supporting texts referring to:
- Generals about quality in welding. Specific standards;
- WPS & WPQR;
- Welding Imperfections;
- Welder Qualification and Inspection

The presentation of the contents of unit ,,QUALITY ASSURANCE IN WELDING" is gradually realized as a difficulty, in a unitary conception, by a consistent style and by highlighting the keywords necessary for the realization of the conceptual scheme.

- The information transmitted is oriented on the learner, respectively on his/her availability, and will better value them;
- The learning outcomes are found in the standards of professional training, for the qualifications corresponding to the field of professional training of level 3 Mechanical, professional qualifications: welder.
- The learning unit ,,QUALITY ASSURANCE IN WELDING" being an elastic structure can incorporate, at any moment of the educational process, new means or didactic resources;
- It allows the individualization of learning and the articulation of formal and informal education.
- Teachers can decide on the number of hours allocated to each topic, depending on: the difficulty of the topics, the level of previous knowledge of the trained group, the complexity and variety of the teaching material used the rate of assimilating the knowledge and forming the skills of the trained group.
- Between learning outcomes and content is a bi-unequivocal relationship, the competences determine the thematic contents, and their achievement ensures the acquisition of the desired skills by the students. The proposed learning outcomes are in line with the specific training.
- The information transmitted in the course support is focused on learning outcomes and acquiring the knowledge, skills and attitudes required in one of the occupations specified in the professional training standards corresponding to the professional qualifications of level 3 in the field of professional training Mechanical, professional qualifications: welder.
- It has a logical structure and coherent.

4 It maximally activates the students' thinking, individualizes the act of learning and it ensures differentiated activities, eliminates dead or redundant times from student activities.

4 The data and information, as well as the terms used, the concepts applied and the concepts covered and are accessible to students.

RECOMMENDATIONS:

4 Define the learning outcomes of the unit should be done.

As a proposal it could be:

Unit: "QUALITY ASSURANCE IN WELDING"

The student is able to:

Knowledge	Skills	Attitudes	Contests of
			learning
Describe and explain the	Use terms and	Communicate	Generals about
role and operation of	definitions that are	to others;	quality in
specific standards about	consistent with	Assumption	welding Specific
quality in welding:	generally accepted	within the work	Standards
 ISO 3834 Quality 	welding terminology	team of the	
Requirement for	as recorded	responsibilities	
Welding Group	international welding	for the work	
ISO 9001- Quality	standards.	task.	
Management			
Systems			
• ISO 14731: 2019 –			
Welding			
coordination –			
Tasks and			
Responsibilities			
Describe and explain the	Identify general rules	-	WPS & WPQR
role of WPS (Welding	for the specification		
Procedure Specification)	and qualification of		
and WPQR (Welding	welding procedures		
Procedure Qualification	for metallic materials.		
Record) for quality level			
referring to:	Reading WPS		
• ISO 15607	Understanding WPS		
Specification and	abbreviations and		
qualification of	terminologies		
welding procedures	Able to prepare his job		
for metallic	according to WPS		
materials - General			
rules			

nnical Report		
• ISO 15609-1		
Specification and		
qualification of		
welding procedures		
for metallic		
materials —		
Welding procedure		
specification — Part		
1: Arc welding		
• ISO 15614-		
1Specification and		
qualification of		
welding procedures		
for metallic		
materials - Welding		
procedure test -		
Part 1: Arc and gas		
welding of steels		
and arc welding of		
nickel and nickel		
alloys		
Identify potential causes of	Carry out pre-	Welding
welding defects or	operational checks in	Imperfections
imperfections prior to	accordance with	
welding, and take action to	manufacturers'	
meet requirements :	specifications.	
• ISO 6520-1:2007	Identify welding	
Welding and allied	defects and take	
processes –	corrective action.	
Classification of		
geometric		
imperfections in		
metallic materials –		
Part 1: Fusion		
1 I		

		I	
• ISO 5817:2014 -			
Welding — Fusion-			
welded joints in			
steel, nickel,			
titanium and their			
alloys (beam			
welding excluded)			
— Quality levels for			
imperfections;			
• ISO 10042:2018 -			
Welding — Arc-			
welded joints in			
aluminium and its			
alloys — Quality			
levels for			
imperfections			
Describe and explain	Inspect welded work-		Welder
standards for quality and	piece for defects (use		Qualification
co-ordination in welding	destructive testing)		and Inspection
reffering to:	and apply quality		
ISO 9606-1: 2012	checks		
Qualification testing	on process.		
of welders - Fusion	Inspect the end		
welding - Part 1:	product for		
Steels	conformance to		
	specifications as		
	reflected on drawing		
	or job requirement.		

4 In order to achieve a better understanding of the course support and to ensure a greater attractiveness for the students, it is necessary to insert more images, diagrams;

Before analyze at sub-section:1.2 Specific standard it needs to include some aspects relating to: standardization an related activities, goal of standardization, what is a standard ;